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ABSTRACT

Reasons are advanced for the belief that scientific method employs and

requires not one, but two kinds of inference - criticism and estimation; once

this is understood the statistical advances made in recent years in Bayesian

methods, data analysis, robust and shrinkage estimators can be seen as a

cohesive whole.
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SIGNIFICANCE AND EXPLANATION

For many years there has existed a LAajor controversy among statisticians

concerning whether Bayesian theory or Sampling (frequentist) theory was

appropriate for making statistical inferences. The roles of data analysis and

of robust and shrinkage estimators have also been matters of dispute.

Building on results from an earlier paper it is here argued that a study of

scientific method and of the part played in it by the human brain shows that

two different kinds of statistical inference - estimation and criticism are

needed from which Bayes and Sampling theory respectively are uniquely

appropriate. This point of view also shows how data analysis, robust and

shrinkage estimators all have appropriate parts to play in the iterative

scheme of scientific enquiry.
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AN APOLOGY FOR ECUMENISM IN STATISTICS

G. E. P. Box
!

Perhaps I should begin with an apology for my title.

* These days the statistician is often asked such questions as

"Are you a Bayesian?" "Are you a frequentist?" "Are you a

data analyst?" "Are you a designer of experiments?" I will

argue that the appropriate answer to all these questions can

be (and preferably should be) "yes", and that we can see why

this is so if we consider the scientific context of what

statisticians do.

For many years Statistics has seemed to be in a rather

turbulent state and the air has been full of argument and

controversy. The relative virtue of alternative methods of

inference and, in particular, of Bayes' and Sampling

(frequentist) inference has been hotly debated. Recently

Data Analysis has rightly received much heavier emphasis,

but its more avid proponents have sometimes seemed to

suggest that all else is worthless. Furthermore while

biased estimators, in particular shrinkage and ridge

estimators, which have been advocated to replace the more

standard varieties are clearly sensible in appropriate

contexts their frequentist justification which ignores

context seems unconvincing. Parallel criticism may be made

of ad hoc robust procedures the proliferation of which has

worried some dissidents who have argued for example that

mechanical downweighting of peculiar observations may divert

attention from important clues to new discovery.

Sponsored by the United States Army under Contract No.
DAAG29-80-C-0041.



Insofar as these debates lead us to progressive change

in our ideas they are healthy and productive, but insofar as

they encourage polarization they may not be. One remembers

with some misgivings Saxe's poem about the six blind men of

Hindustan investigating an elephant. It will be recollected

that one, feeling only the elephant's trunk, thought it like

a snake, another, touching its ear, thought it must be a
C- fan, etc. The poem ends:

And so these men of Hindustan

Disputed loud and long,

Each in his opinion

Exceeding stiff and strong,

Though each was partly in the right,

And all were in the wrong.

Some of the difficulties arise from the need to

simplify. But simplification included merely to produce

satisfying mathematics or to reduce problems to convenienti
small sized pieces can produce misleading conclusions.

Simplification which retains the essential scientific

essence of the problem is most likely to lead to useful

answers but this requires understanding of, and interest in,

scientific context.

1. SOME QUESTIONABLE SIMPLIFICATIONS.

(a) It has been argued that Bayes' theorem uniquely

solves all problems of inference. However only part of the

inferential exercises in which the statistical scientist is

* ordinarily engaged seem to conveniently fit the Bayesian

mold. In particular diagnostic checks of goodness of fit

involving various analyses of residuals seem to require

other justification. In fact I believe (Box [1980)) that

the process of scientific investigation involves not one but

two kinds of inference: estimation and criticism, used

iteratively and in alternation. Bayes completely solves the

problem of estimation and can also be helpful at the

criticism stage in judging the relative plausibility of two

or more models. However because of its necessarily

conditional nature, it cannot deal with the most essential

part of inferential criticism which requires a sampling

(frequentist) justification.
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(b) Fisher [19563 believed that the Neyman-Pearson

theory for testing statistical hypotheses, while providing a

model for industrial quality control and sampling

inspection, did not of itself provide an appropriate basis

for the conduct of scientific research. This can be

regarded as the complement to the objection raised in (a),

for statistical quality control and inspection are methods

of inferential criticism supplying a continuous check on the

adequacy of fit of the model for the properly operating

process. I would regard Fisher's comment as meaning that

the Neyman-Pearson theory was irrelevant to problems of

estimation. Certainly there is evidence in the social

sciences that excessive reliance upon this theory alone,

encouraged by the mistaken prejudices of referees and

editors, has led to harmful distortion of the conduct of

scientific investigation in these fields.

(c) In some important contexts the scientific

relevance of alphabetic optimality criteria (AE,D,G etc.)

in the choice of experimental designs has been questioned

(see discussion of Kiefer [1959), also Box [1982]). Here

again there is danger of deleterious feedback since users of

" 'statistical design, perhaps dazzled by impressive but poorly

comprehended mathematics, may fail to realize the naive

framework within which the optimality occurs.

(d) Even Data Analysis, excellent in itself, presents

some dangers. It is a major step forward that in these days

students of statistics are required more and more to work

on real data. Indeed suitable "data sets" have been set

aside for their study. But this too can produce misunder-

standing. For instance, some examples have become notorious

and have been analyzed by a plethora of experts; one

finds three outliers, another claims that a transformation
is needed and then only one outlier occurs, and so on.

Too much exposure to this sort of thing can again lead to

the mistaken idea that this represents the real context

of scientific investigation. The statistician in his

proper role as a member of a scientific team should

certainly make such analyses, but realistically he would

then discuss them with his scientific colleagues and

-3-
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present, when appropriate, not one, but alternative

K plausible possibilities. He need not, and usually should

°K' not, choose among them. Rather he should make sure that

these possibilities were considered when he and his

scientific colleagues planned the next stage of the

investigation. Together they would choose the next design

so that among other things it could resolve current

uncertainties judged to be important. In particular the

possible meaning and importance of discrepant values would

then be discussed as well as the meaning of analyses which

downweighted or excluded them.

The most dangerous and misleading of the unstated

assumptions suggested to some extent by all these

simplifications concerns the implied static nature of the

process of investigation: A Bayesian analysis is made; a

hypothesis is tested; one model is considered; a single

design is run; a single set of data is examined and

reexamined(l).

I believe that the object of statistical theory should

be to explain, at least approximately, what good scientists

do and to help them do it better. It seems necessary

therefore to examine at least briefly the nature of the

scientific process itself.

2. SCIENTIFIC METHOD AND THE HUMAN BRAIN.

Scientific method is a formalization of the everyday

process of finding things out. For thousands of years,

things were found out largely as a result of chance

occurrences. For a new "natural law" to be discovered, two

()While provision is made for adaptive feedback in data
analysis, usually the possibility of acquiring further data
to illuminate points at issue is not. What we do as
statisticians depends heavily on expectations implied by our
training. While a previous generation of graduates might
have expected to prove theorems, occasionally to test an
isolated hypothesis, and perhaps to teach a new generation
of students to do likewise, the present generation might be
forgiven for believing that their fate is only to explore
"data sets" and speculate on what might or might not explain
them. We must encourage our students to accept the heritage
bestowed by Fisher, who elevated the statistician from an
archivist to an active designer of experiments and hence an
architect and coequal investigator.

-4-



circumstances needed to coincide: (a) a potentially

informative experience needed to occur, and (b) the

phenomenon needed to be known about by someone of sufficient

acuity of mind to formulate, and preferably to test, a

possible rule for its future occurrence.

Progress was slow because of the rarity of the two

necessary individual circumstances and the still greater

rarity of their coincidence. Experimental science accel-

erates this learning process by isolating its essence:

potentially informative experiences are deliberately

staged and made to occur in the presence of a trained

investigator. As science has developed, we have learned how

such artificial experiences may be carefully contrived to

isolate questions of interest, how conjectures that are put

forward may be tested, and how residual differences from

what had been expected can be used to modify and improve

initial ideas. So the ordinary process of learning has been

sharpened and accelerated.

The instrument of all learning is the brain - an

incredibly complex structure, the working of which we have

only recently begun to understand. One thing that is clear

is the importance to the brain of models. To appreciate why

this is so, consider how helpless we would be if, each

night, all our memories were eliminated, so that we awoke to

each new day with no past experiences whatever and hence no

models to guide our conduct. In fact, our past experience

is conveniently accumulated in models M1 ,M2 ,...,i , ....

Some of these models are well established, others less so,

while still others are in the very early stages of creation.

When some new fact or body of facts Yd comes to our

attention, the mind tries to associate this new experience

with an established model. When, as is usual, it succeeds

in doing so, this new knowledge is incorporated in the

appropriate model and can set in train appropriate action.

Obviously, to avoid chaos the brain must be good at

allocating data to an appropriate model and at initiating

the constructiorl of a new model if this should prove to be

necessary. To conduct such business the mind must be able

-5-



to deduce what facts could be expected as realizations of a

particular model and, more difficult, to induce what

model(s) are consonant with particular facts.

Thus, it is concerned with two kinds of inference:

(A) Contrasting of new facts Yd with a possible model

M: an operation I will characterize by subtraction

M - Yd. This process stimulates induction and will be

called criticism. (B) Incorporating new facts Yd into an

appropriate model: an operation I will characterize by

addition M + Yd" This process is entirely deductive and

will be called estimation.

I believe then that many of our difficulties arise

because, while there is an essential need for two kinds of

inference, there seems an inherent propensity among

statisticians to seek for only one.

In any case, research which, following the discoveries

of Roger Sperry and his associates, has gathered great

momentum in the past 25 years shows that the human brain

behaves not as a single entity but as two largely separate

but cooperating instruments which do two different things

(see for example Springer and Deutsch [1981], Blackeslee

[1980)).

In most people(2), the left brain is concerned

primarily with language and logical deduction, the right

brain with images, patterns and inductive processes. The

two sides of the brain are joined by millions of connections

in the corpus callosum. It is known that the left brain

plays a conscious and dominant role while by contrast one

may be quite unaware (3 ) of the working of the right brain.

(2)In about one third of left-handed people (about 5% of the

population) the roles of the right and left brain are
reversed.

(3)For example the apparently instinctive knowledge of what
to do and how to do it, enjoyed by the experienced tennis
player and by the experienced motorist, comes from the right
brain.
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The right brain's ability to appreciate (4 ) patterns in

data Yd and to find patterns in discrepancies Mi - Yd

* between the data and what might be expected if some

tentative model were true is of great importance in the

search for explanations of data and of discrepant events.

This accomplishment of the right brain of pattern

recognition is of course of enormous consequence in

scientific discovery (5 ). However, some check is needed on

its pattern seeking ability, for common experience shows

that some pattern or other can be seen in almost any set of

data or facts(6). This is the object of diagnostic checks

and tests of fit which, I will argue, require frequentist

theory significance tests for their formal justification.

3. THE THEORY - PRACTICE ITERATION.

It has long been recognized that the learning process

is a motivated iteration between theory and practice. By

practice I mean reality in the form of data or facts. In

this iteration deduction and induction are employed in

alternation. Progress of an investigation is thus evidenced

by a theoretical model, which is not static, but by

appropriate exposure to reality continually evolves until

(4)Implicit recognition of the need to stimulate the
remarkable pattern-seeking ability of the right brain is
evidenced by modern emphasis on ingenious plotting devices
in the model formulation/modification phases of
investigation. In particular Chernoff's representation of
multivariate data by faces [1973) and earlier Edgar
Anderson's use of glyphs [1960] direct the right brain to
the recognition problem at which it excels.

(5)Manifestations of the importance to discovery of
unconscious pattern seeking by the right brain have often
been noticed. For example, Beveridge [1950] remarks that
happenings of the following kind are commonplace: a
scientist has mulled over a set of data for many months and
then, at a certain point in time, perhaps on a country walk
when the problem is not being consciously thought about, he
suddenly becomes aware of a solution (model) which explains
these data. This point in time is presumably that at which
the right brain sees fit to let the left brain know what it
has figured out.

(6)See, for example, the King of Heart's rationalization of

the poem brought as evidence in the trial of tne Knave of
Hearts in Lewis Carrol's Alice in Wonderland.
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some currently satisfactory level of understanding is

reached. At any given stage in a scientific investigation

the current model helps us to appreciate not only what we

know, but what else it may yet be important to find out and

so motivates the collection of new data to illuminate dark

but possibly interesting corners of present knowledge. See

for example Box and Youle [1955), Box [1976), Box, Hunter

and Hunter [1978).

The reader can find illustration of these matters in

his everyday experience, or in the evolution of the plot of

any good mystery novel, as well as in any reasonably honest

account of the events leading to scientific discovery.

Different levels of adaptation

The adaptive iteration we have described produces

change in what we believe about the system being studied,

but it can also produce change in how we study it, and

sometimes even in the objective (7 ) of the study. This

multiple adaptivity explains the surprising property of

convergence of a process of investigation which at first

appears hopelessly arbitrary. See for example Box [1957).

To appreciate this arbitrariness, suppose that some

scientific problem were being studied by, say, 10

independent sets of investigators, all competent in the

field of endeavor. It is certain that they would start from

different points, conduct the investigation in different

ways, have different initial ideas about which variables

were important, on what scales,and in which transfor-

mation. Yet it is perfectly possible that they would all

eventually reach similar conclusions. It is important

to bear this context of multiple iteration in mind

(7)If we start out to prospect for silver, we should not
ignore an accidental discovery of gold. For example, one
experimental attempt to find manufacturing conditions giving
greater yield of a particular product failed to find any
such, but did find reaction conditions giving the same yield
with the reaction time halved. This meant that, by
switching to the new manufacturing conditions, throughput
could be doubled, and that a costly, previously planned,
extension of the plant was unnecessary.
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when we consider the scientific process and how it relates

to a statistical method.

4. STATISTICAL ESTIMATION AND CRITICISM.

In a recent paper (Box [1980)) a statistical theory was

presented which, it was argued, was consonant with the view

of scientific investigation outlined above. Suppose at the

ith stage of such an investigation a set of assumptions

Ai are tentatively entertained which postulate that to an

adequate approximation, the density function for potential

data x is p(xIe,A i) and the prior distribution for 6

is p(81Ai). Then it was argued that the model Mi should
1

be defined as the joint distribution of and 8
p(.,O 1A p( le,Ai)p(81A (i)

since it is a complete statement of prior tentative belief

at stage i. In these expressions Ai is understood to

indicate all or some of the assumptions in the model

specification at stage i. The model of equation (1) means

to me that current belief about the outcome of contemplated

data acquisition would be calibrated with adequate

approximation by a physical simulation involving appropriate

random sampling from the distributions p(XIO,A i) and

p( IAi).

The model can also be factored as

p(,IA) = p(8IX,A)p(XIA) . (2)

The second factor on the right, which can be computed before

any data become available,

p(XIA) = f p(XjI,A)p(8lA)d8 (3)

is the predictive distribution of the totality of all

possible samples X that could occur if the assumptions

were true.

When an actual data vector Xd becomes available

P(Jd, IA) = P(VIA)p( d1A) • (4)

The first factor on the right is the Bayes' posterior

distribution of 0 given Yd

p(£1Xd,A) - P(Yd ,A)p(Q-A) (5)

-9-



while the second factor

p(MdJA) = f p(XaIeA)p(6IA)de , (6)

is the predictive density associated with the particular

data Yd actually obtained conditional on the truth of the

model and on the data Xd having occurred.

The posterior distribution p(8t dA) allows all

relevant estimation inferences to be made about 8, but

this posterior distribution can supply no information about

the adequacy of the model. Information on adequacy may be

provided, however, by reference of the density p(XdJA) to
the predictive reference distribution p(yIA) or of the

density P{gi(,d) IA} of some relevant checking function

gi(yd ) to its predictive distribution and in particular by

computing the probabilities

- Pr{p(.vlA) 1 (dA)) (7)

and

Pr[p{gi(.y)IA } 4 p~gi(yd ) JA}]  (8)

Two illustrative examples follow.

4.1. The Binomial Model

As an elementary example, suppose inferences are to be

made about the proportion e of successes in a set of

binomial trials.

Suppose n trials are about to be made and assume a

beta-distribution prior with mean 80. Then

me m01 m(l-80)-l

p(eIA) = [B{(m80 1m(l-8 0))]- 0 (1-e) (9)

p(yj8,A) = (n)8y(l - e)n-y (10)
y

and the predictive distribution is

p(yIA)=(y)[B{m80 ,m(l-00 )1]- 1B{me0 +y, m(1-80 )+n-y) (11)

which may be computed before the data are obtained.

If, now, having performed n trials, there are Yd

successes, the likelihood defined up to a multiplicative

constant is

-10-



L(eYdA) = Yd( - n-yd (12)

the predictive density is

p(YdA)d(nyd)[B ,m(-0 8)}]B~mO+yd,m(1 - 0 )+n - yd} (13)

and the posterior distribution of 8 is

p(elyd,A) = [B{me0 + Ydm(l80) + n - yd] -  X

Yd+me -1 n-yd+m(l-e 
0 )-I

d(1 - 8) . (14)

In the examples of Figures 1 and 2 full lines are used for

items available prior to the availability of data Yd and

dotted lines for items available only after the data Yd

are in hand. Both Figures 1 and 2 illustrate a situation

where the prior distribution p(6 A) has mean e0 = 0.2

and m = 20 and we know that n = 10 trials are to be

performed. Knowing these facts, we can immediately

calculate the predictive distribution p(ylA) which is the

probability distribution for all possible outcomes from such

a model if we suppose the model is true.

When the experiment is actually performed suppose at

first, as in Figure 1, that Yd = 3 of the trials are

successes. The predictive probability p(31A) associated

with this outcome is not unusually small. In fact

Pr{p(ylA) 4 p(31A)) = 0.42 and we have no reason to

question the model. Thus for this sample the likelihood

L(ely) may reasonably be combined with the prior to

produce the posterior distribution shown.

In Figure 2 however it is supposed instead that the

outcome is Yd = 8 successes so that for this sample

Pr{p(ylA) 4 p(81A)} = 0.0013 and the adequacy of the

model, and in particular the adequacy of the prior

distribution, is now called into question. Inspection of

the figure shows how this agrees with common sense; for in

the case illustrated the posterior distribution is unlike

either the prior distribution or the likelihood which were

combined to obtain it.

-11-



p(GOA)

%0 L( yA)

/
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Yd

P(yIA) i I I

0 1 2 3 4 5 6 7 8 9 10

Pr{p(ylA) < p(ydIA)} = 0.42
/\

p(O ydA)
~/

QO 0.1 0.2 0.3 0.4 0.5 06 0.7 08 0.9 1.0
Figure 1. Prior, likelihood, predictive and posterior

distributions for n = 10 Bernoulli trials
with yd 3 successes.
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p(61IA) L(8I yA)

0.6 .1 Q 0. 6.4 0.50.6 .7 .8 9 1.j

p~y IA) Y

0.0 0.1 0G2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4/

Fig ure 2. Prior, likelihood, predictive and posterior
distributions for n = 10 Bernoulli trials
with ~d=8 successes.
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Misgivings about the use of Bayes' theorem which some

have expressed in the past are certainly associated with the

possibility of distorting the information coming from the

data by the use of an inappropriate prior. distribution.

Without predictive checks, the following objections would

carry great weight:

(a) that nothing in the Bayes' calculation of the

posterior distribution itself could warn of the

incompatibility of the data and the model, and especially

the prior; and

(b) that in complicated examples it would not be so

obvious when this incompatibility occurred.

A case of particular interest occurs when the prior is

sharply centered (8 ) at its mean value 60 = 0.2. This

happens in the above binomial setup when m is made very

large. Then, if the model is unquestioned, the posterior

distribution will be essentially the same as the prior

leading to the conclusion that 0 is close to 0 whatever0
the data. The predictive distribution in this case is

p(yI 00,A), the ordinary binomial sampling distribution,

and the predictive check is the standard binomial

significance test, which can discredit the model with

0 = 80 = 0.2 and hence discredit the application of Bayes'

theorem to this case. This, to my mind, produces the most

satisfactory justification for the standard significance

test.

4.2. The Normal Linear Model and Ridge Estimators

Another example, discussed in Box [1980J, concerns the

normal linear model. In a familiar notation suppose

x N(UP + Xn2 (15)

with 1 a vector of unities and X of full rank k and

such that X'1 = 0 and suppose that prior densities are

locally approximated by

(8)Such a model with a prior sharply centered at 0 = 0.2 might
be appropriate, for instance, if a trial consisted of spinning ten
times what seemed to be a properly balanced pentagonal top and
counting the number of times the top fell on a particular segment.

-14-



J,-N c-l 2 ),o-N (or- 1 a2 ), 2/v 0 s 02-X ( v0 ) (16)

where X -22
(v0) refers to the inverted X distribtuion

with v0  degrees of freedom and i and 0 independent

conditional on a .

Given a sample Yd' special interest attaches to 6

and a2 which, given the assumptions, are estimated byp~ 2
P(0,0 dA) with marginal distributions

d{1 (17)
(n + VO)a d

2 -(n+v 0+2) 12 2
p(O 2xYA) a exp(- (n + vo)d/a 2 (18)

with
-d (22 r)xx + - d + £0) ,

SO = ,)- =n - ,
-d (2's)2 d' V=n-k-1,(19)

(n *)2 = vS2 + V0 2 + ( - )[' -l + I-'}-(d-. 0)- -- d1-- 2

+ (n +c ) (n k 1 (0 )1

and

bs
2 = (I- x(X'x)-X'}, = - X(XX)-lX d (20)

d X

Now let

s 2 = (v + v) -l (VS2 + V0 s0) andp

2 = (v + -1 2 2
(V + F 1VS2 V s(21)

5 pd "a vd oo

Then the joint predictive distribution can be factored into
independent components for Q - e01/S, s2 ,  and v - 1

angular elements of the standarized residuals. A predictive

check based on the first of these factors

Pr{p((e - 8o)/splA) <P(d -p0)/SpdlA))

)I -1 -(8d-°1 ' MX)-+ r- -(6d-0O- n
= Pr{Fk,v+v (

ks 2

pd

-15-



is the standard analysis of variance check for compatibility
9 A

of two estimates 6d and 0 and was earlier proposed as a

check for compatibility of prior and sample information by

Theil [1963).

Now suppose the X matrix to be in correlation form

and assume 0= o r = +kY0'0 0 so that s2 + S2 Then

the estimates 9d are the ridge estimators of Hoerl and

Kennard [1970) which, given the assumptions, appropriately

combine information from the prior with information from the

data. The predictive check (22) now yields

e~(X'x + yIY
a= PrFkv > ks -2di (23)

kd

allowing any choice of y0 to be criticized.

For example, in their original analysis of the data of

Gorman and Toman [1966), Hoerl and Kennard [1970) chose a

value ¥0 = 0.25. But substitution of this value in (23)

yields a = Pr{F 10,25 > 3.59) < 0.01 which discredits this

choice.

One can see for these examples how the two functions of

criticism and estimation are performed by the predictive

check on the one hand and the Bayesian posterior

distribution on the other.

Thus consider the ridge (Bayes' mean) estimator of the

second example. This estimator is a linear combination of

the least squares estimate and the prior mean 60' with

weights supplied by the appropriate information matrices,

and with covariance matrix obtained by inverting the sum of

these information matrices. Assuming the data to be a

realization of the model, this is the appropriate way of

combining the two sources of information.

The predictive check, on the other hand, contrasts the

values 8 and 80 with a dispersion matrix obtained by

appropriately summing the two dispersion matrices.

The combination of information from the prior and

likelihood into the posterior distribution and the

contrasting of these two sources of information in the

predictive distribution is equally clear in the binomial
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example and especially in its appropriate normal

approximation.

5. SOME OBJECTIONS CONSIDERED

A recapitulation of the argument and a consideration of

some objections is considered in this section.

5.1. Essential elements of the argument

A. Scientific investigation is an iterative process in

which the model is not static but is continually evolving.

At a given stage the nature of the uncertainties in a model

directs the acquisition of further data, whether by choosing

the design of an experiment or sample survey, or by

motivating a search of a library or data bank. At, say, the

ith stage of an investigation all current structural

assumptions Ai, including those about the prior, must be

thought of, not as being true, but rather as being

subjective guesses which at this particular stage of the

investigation are worth entertaining. It is consistent with

this attitude that when data Xd become available checks

need to be applied to assess consonance with Ai.

B. The statistical model at the ith stage of the

investigation should be defined as the joint distribution of

Sand e given the assumptions Ai

p(,OA i ) = ip(yA )p(A) . (24)

C. Not one but two distinct kinds of inference are

involved within the iterative process: criticism in which

the appropriateness of regarding data Xd as a realization

of a particular model M is questioned; estimation in which

the consequences of the assumption that data Xd are a

realization of a model M are made manifest.

This criticism-estimation dichotomy is characterized

mathematically by the factorization of the model realization

p( d,Q1Ai) into the predictive density p(dA i ) and the

posterior distribution p(8I d,Ai). The predictive

distribution p(XIA i) provides a reference distribution for

p(YdAi). Similarly the predictive distribution

p~g(X)JA iJ of any checking function g(X) provides a
reference distribution of the corresponding predictive
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density Pfg(Yd Ai). Unusually small values of this density

suggest that the current model is open to question.

D. If we are satisfied with the adequacy of the

assumptions Ai then the posterior distribution

p(eIyd,Ai) allows for complete estimation of e and no

other procedures of estimation are relevant. In particular,

therefore, insofar as shrinkage, ridge and robust estimators

are useful, they ought to be direct consequences of an

appropriate model and should not need the invocation of

extraneous considerations such as minimization of mean

square error.

Objections. Numbered to correspond with the various

elements of the argument are responses to some objections

that have been, or might be, raised.

A(i) Iterative investigation? Some would protest that

their own statistical experience is not with iterative

investigation but with a single set of data to be analyzed,

or a single design to be laid out and the results

elucidated.

Many circumstances where the statistican has been

involved in a "one-shot" analysis rather than an iterative

partnership, ought not to have happened. Such involvement

frequently occurs when the statistician has been drafted as

a last resort, all other attempts to make sense of the data

having failed. At this point data gathering will usually

have been completed and there is no chance of influencing

the course of the study. Statisticians whose training has

not exposed them to the overriding importance of

experimental design are most likely to acquiesce in this

situation, or even to think of it as normal, and thus to

encourage its continuance.

The statistician who has cooperated in the design of a

single experiment which he analyzes is somewhat better

off. However one-shot designs are often inappropriate

also. Underlying most investigations is a budget, stated or

unstated, of time and/or money that can reasonably be

expended. Sometimes this latent budget is not adequate to

the goal of the investigation, but, for purposes of

discussion, let us suppose that it is. Then if a
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sequential/iterative approach is possible it would usually

be quite inappropriate to plan the whole investigation at

the beginning in one large design. This is because the

results from a first design will almost invariably supply

new and often unexpected information about choice of

variables, metrics, transformations, regions of operability,

unexpected side-effects, and so forth, which will vitally

influence the course of the investigation and the nature of

the next experimental arrangement. A rough working rule is

that not more than 25% of the time-and-money budget should

be spent on the first design. Because large designs can in

a limited theoretical sense be more efficient it is a common

mistake not to take advantage of the iterative option when

it is available. Instances have occurred of experimenters

regretting that they were persuaded by an inexperienced

statistician to perform a large "all inclusive" design where

an adaptive strategy would have been much better. In

particular, it is likely that many of the runs from such

"all-embracing" designs, will turn out to be noninformative

because their structure was decided when least was known

about the problem.

Scientific iteration is strikingly exemplified in

response surface studies (see, for example, Box and Wilson

[1951), Box [1954), Box and Youle [1955]). In particular

methods such as steepest ascent and canonical analysis can

lead to exploration of new regions of the experimental

space, requiring elucidation by new designs which, in turn,

can lead to the use of models of higher levels of

sophistication. Although in these examples the necessity

for such an iterative theory is most obvious, it clearly

exists much more generally, for example in investigations

employing sequences of orthodox experimental designs and to

many applications of regression analysis. It has sometimes

been suggested that agricultural field trials are not

sequential but of course this is not so; only the time frame

is longer. Obviously what is learned from one year's work

is used to design the next year's experiments.

However I agree that there are some more convincing

exceptions. For example, a definitive trial which is
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intended to settle a controversy such as a test of the

effectiveness of Laetrile as a cure for cancer. Also the

iteration can be very slow. For example, in trials on the

weathering of paints, each phase can take from 5-10 years.

A(ii) Subjective probability? The view of the process

of scientific investigation as one of model evolution has

consequences concerning subjective probabilities. An

objection to a subjectivist position is that in presenting

the final results of our investigation, we need to convince

the outside world that we have really reached the conclusion

that we say we have. It is argued that, for this purpose,

subjective probabilities are useless. However I believe

that the confirmatory stage of an iterative investigation,

when it is to be demonstrated that the final destination

reached is where it is claimed to be, will typically occupy,

perhaps, only the last 5 per cent of the experimental

effort. The other 95 per cent - the wandering journey that

has finally led to that destination - involves, as I have

said, many heroic subjective choices (what variables? what

levels? which scales? etc., etc.) at every stage. Since

there is no way to avoid these subjective choices which are

a major determinant of success why should we fuss over

subjective probability?

Of course, the last 5 per cent of the investigation

occurs when most of the problems have been cleared up and we

know most about the model. It is this rather minor part of

the process of investigation that has been emphasized by

hypothesis testers and decision theorists. The resultant

magnification of the importance of formal hypothesis tests

has inadvertently led to underestimation by scientists of

the area in which statistical methods can be of value and to

a wide misunderstanding of their purpose. This is often

evidenced in particular by the attitudes to statistics of

editors and referees of journals in the social, medical and

biological sciences.

B(i) The Statistical Model? The statistical model has

sometimes been thought of as the density function p(ZI9,A)

rather than the joint density p(y, IA) which reflects the
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influence of the prior. However only the latter form

contains all currently entertained beliefs about and

8. It seems quite impossible to separate prior belief from

assumptions about model structure. This is evidenced by the

fact that assumptions are frequently interchangeable between

the density p(yl8) and the prior p(e). As an elementary

example, suppose that among the parameters e = (t,O) of a

class of distributions 8 is a shape parameter such that

p(Xlt,80) is the normal density. Then it may be

convenient, for example in studies of robustness, to define

a normal distribution by writing the more general density

p(yl,O) with an associated prior for 0 which can be

concentrated at 0 = 00. The element specifying normality

which in the usual formulation is contained in the density

p(y,e) is thus transferred to the prior p(O).

B(ii) Do we need a prior? Another objection to the

proposed formulation of the model is the standard protest of

non-Bayesians concerning the introduction of any prior

distribution as an unnecessary and arbitrary element.

However, recent history has shown that it is the omission in

sampling theory, rather than the inclusion in Bayesian

analysis, of an appropriate prior distribution, that leads

to trouble.

For instance Stein's result [1955] concerning the

inadmissibility of the vector of sample averages as an

estimate of the mean of a multivariate normal distribution

is well known. But consider its practical implication for,

say, an experiment resulting in a one-way analysis of

variance. Such an experiment could make sense when it is

conducted to compare, for example, the levels of infestation

of k different varieties of wheat, or the numbers of eggs

laid by k different breeds of chickens or the yields of

k successive batches of chemical; in general, that is,

when a priori we expect similarities of one kind or another

between the entities compared. But clearly, if similarities

are in mind, they ought not to be denied by the form of the

model. They are so denied by the improper prior which

produces as Rayesian means the sample averages, which are in

turn the orthodox estimates from sampling theory.
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Now the reason that k wheat varieties, k chicken

breeds or k batch yields are being jointly considered is

because they are, in one sense or another, comparable. The

presence of a specific form of prior distribution allows the

investigator to incorporate in the model precisely the kind

of similarities he wishes to entertain. Thus in the

comparison of varieties of wheat or of breeds of chicken it

might well be appropriate to consider the variety means as

randomly sampled from some prior super-population and, as is

well known, this can produce the standard shrinkage

estimators as Bayesian means (Lindley [1965], Box and Tiao

[1968), Lindley and Smith [1972)). But notice that such a

model is likely to be quite inappropriate for the yields

of k successive batches of chemical. These mean yields

might much more reasonably be regarded as a sequence from

some autocorrelated time series. A prior which reflected

this concept led Tiao and Ali [1971) to functions for the

Bayesian means which are quite different from the orthodox

shrinkage estimators.

In summary, then, both sampling theory and Bayes theory

can rationalize the use of shrinkage estimators, and the

fact that the former does so merely on the basis of

reduction of mean square error with no overt use of a prior

distribution, at first seems an advantage. However, only

the explicit inclusion of a prior distribution, which

sensibly describes the situation we wish to entertain, can

tell us what is the appropriate function to consider, and

avoid the manifest absurdities which seem inherent in the

sampling theory approach which implies, for example, that we

can improve estimates by considering as one group varieties

of wheat, breeds of chicken, and batches of chemical.

C(i) Is there an iterative interplay between criticism

and estimation? A good example of the iterative

interplay between criticism and estimation is seen in

parametric time series model building as described for

example by Box and Jenkins [1970]. Critical inspection of

the plotted time series and of the corresponding plotted

autocorrelation function, and other functions derivable from

it, together with their rough limits of error, can suggest a
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model specification and in particular a parametric model.

Temporarily behaving as if we believed this specification,

we may now estimate the parameters of the time series model

by their Bayesian posterior distribution (which, for samples

of the size usually employed, is sufficiently well indicated

by the likelihood). The residuals from the fitted model are

now similarly critically examined, which can lead to

respecification of the model, and so on. Systematic

liquidation of serial dependence brought about by such an

iteration can eventually produce a parametric time series

model; that is a linear filter which approximately

transforms the time series to a white noise series. Anyone

who carries through this process must be aware of the very

different nature of the two inferential processes of

criticism and estimation which are used in alternation in

each iterative cycle.

C(ii) Why can't all criticism be done using Bayes

posterior analysis?

It is sometimes argued that model checking can always

be performed as follows: let A1,A 2 ,...,tA k be alternative

assumptions; then the computation of
p(.yJAi)P(A i

p(Ailx) = k (i = 1,2,...,k) (25)
1 pl.xJAji)plA)

j=lJ

yields the probabilities for the various sets of

assumptions.

The difficulty with this approach is that by supposing

all possible sets of assumptions known a priori it

discredits the possibility of new discovery. But new

discovery is, after all, the most important object of the

scientific process.

At first, it might be thought that the use of (25) is

not misleading, since it correctly assesses the relative

plausibility of the models considered. But in practice this

would seem of little comfort. For example suppose that

only k = 3 models are currently regarded as possible, and

that having collected some data the posterior probabilities

p(Aily) are 0.001, 0.001, 0.998 (i = 1,2,3). Although
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in relation to these particular alternatives p(A 3 I' ) is

overwhelmingly large this does not necessarily imply that in

the real world assumptions A3  could be safely adopted.

For, suppose unknown to the investigator, a fourth

possibility A4 exists which given the data is a thousand

times more probable than the group of assumptions previously

considered. Then, if that model had been included, the

probabilities would be 0.000,001, 0.000,001, 0.000,998, and

0.999,000.

Furthermore, in ignorance of A4  it is highly likely

that a study of the components of the predictive

distribution p(XIA3 ) and in particular of the residuals,

could (a) have shown that A3 was not acceptable and (b)

have provided clues as to the identity of A4 . The

objective of good science must be to conjure into existence

what has not been contemplated previously. A Bayesian

theory which excludes this possibility subverts the

principle aim of scientific investigation.

More generally, the possibility that there are more

than one set of assumptions that may be considered, merely

extends the definition of the model to

p(X,,A)= p(xlAj)p(eJAj)p(A) (j = l,2,...,k)

which in turn will yield a predictive distribution. In a

situation when this more general model is inadequate a

mechanical use of Bayes theorem could produce a misleading

analysis, while suitable inspection of predictive checks

could have demonstrated, on a sampling theory argument, that

the global model was almost certainly wrong and could have

indicated possible remedies.
(9 )

C(iii) An abrogation of the likelihood principle? The

likelihood principle holds, of course, for the estimation

aspect of inference in which the model is temporarily

assumed true. However it is inapplicable to the criticism

process in which the model is regarded as in doubt.

(94 am grateful to Dr. Michael Titterington for pointing OUt that in
discriminant analysis the atypicality indices of Aitchison ani Aitken
[1976] use similar ideas.
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*i If the assumptions A are supposed true, the

likelihood function contains all the information about

coming from the particular observed data vector Yd" When

combined with the prior distribution for 0 it therefore

tells all we can know about 8 given Xd and A. In such

a case the predictive density p(XdJA) can tell us nothing

we have not already assumed to be true, and will fall within

a given interval with precisely the frequency forecast by

the predictive distribution. When the assumptions are

regarded as possibly false, however, this will no longer be

true and information about model inadequacy can be supplied

by considering the density p(XdIA) in relation to

p(yIA). Thus for the Normal linear model, the distribution

of residuals contains no information if the model is true,

but provides the reference against which standard residual

checks, graphical and otherwise, are made on the supposition

that it may be importantly false.

In the criticism phase we are considering whether,

given A, the sample Xd is likely to have occurred at

all. To do this we must consider it in relation to the

other samples that could have occurred but did not.

For instance in the Bernoulli trial example, had we

sampled until we had r successes rather than until we

had n trials, then the likelihood, and, for a fixed prior,

the posterior distribution, would have been unaffected, but

the predictive check would (appropriately) have been

somewhat different because the appropriate reference set

supplied by p(yIA) would be different.

C(iv) How do you choose the significance level?

It has been argued that if significance tests are to be

employed to check the model, then it is necessary to state

in advance the level of significance a which is to be used

and that no rational basis exists for making such a choice.

While I believe the ultimate justification of model

checking is the reference of the checking function to its

appropriate predictive distribution, the examples I have

given to illustrate the predictive check may have given a

misleading idea of the formality with which this should be

done. In practice the predictive check is not intended as a
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formal test in the Neyman-Pearson sense but rather as a

rough assessment of signal to noise ratio. It is needed to

see which indications might be worth pursuing. In practice

model checks are frequently graphical, appealing as they

should to the pattern recognition capability of the right

brain. Examples are to be found in the Normal probability

plots for factorial effects and residuals advocated by

Daniel [1959), Atkinson [1973) and Cook [1977). Because

spurious patterns may often be seen in noisy data some rough

reference of the pattern to its noise level is needed.

D. As might be expected the mistaken search for a

single principle of inference has resulted in two kinds of

incongruity:

attempts to base estimation on sampling theory, using

point estimates and confidence intervals; and

attempts to base criticism and hypothesis testing

entirely on Bayesian theory.

The present proposals exclude both these possibilities

Concerning estimation, we will not here recapitulate

the usual objections to confidence intervals and point

estimates but will consider the latter in relation to

shrinkage estimators, ridge estimators, and robust

estimators. From the traditional sampling theory point of

view these estimators have been justified on the ground that

they have smaller mean square error then traditional

estimators. But from a Bayesian viewpoint, they come about

as a direct result of employing a credible rather than an

incredible model. The Bayes' approach provides some

assurance against incredibility since it requires that all

assumptions of the model be clearly visible and available

for criticism.

For illustration, emphasized below by underlining, are

the assumptions that would be needed for a Bayesian

justification of standard linear least squares. We must

postulate not only the model

Yu = x + eu u = 1,2,...,n (26)

with the eu'S independently and normally distributed with
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constant variance a 2, but also postulate an improper prior
2

for 6 and o2

(a) Consider first the choice of prior. As was

pointed out by Anscombe [1963), if we use a measure such as

VO' to gauge the size of the parameters, a locally flat

prior for 8 implies that the larger is the size measure

i '8 the more probable it becomes. The model is thus

incredible. From a Bayesian viewpoint shrinkage and ridge

estimators imply more credible choices of the model, which,

even though approximate are not incredible.

(b) For data collected serially (in particular, for

much economic data) the assumption of error independence in

equation (26) is equally incredible and again its violation

can lead to erroneous conclusions. See for example Coen,

Gomme and Kendall [1969] and Box and Newbold [1971).

(c) The assumption that the specification in (26) is

necessarily appropriate for every subscript u = 1,2...,n

is surely incredible. For it implies that the experi-

menter's answer to the question "Could there be a small

probability (such as 0.001) that any one of the experimental

runs was unwittingly misconducted?" is "No; that probability

is exactly zero."

So far as the last assumption is concerned a more

credible model considered by Jeffreys [1932), Dixon

[1953], Tukey [1960) and Box and Tiao [1968) supposes that

the error e is distributed as a mixture of Normal

distributions

p(eIe,a) = (1 - a)f(eIO,a) + af(eIO,ka) . (27)

This model was used by Bailey and Box [1980] to estimate the

15 coefficients in the fitted model

4 4 4 4 2.. 2
y 0 + 1 0i x + I [ Iijxi x + x 1 iixi + e (28)i=l i=l j~iil

using data from a balanced incomplete 34 factorial design.

Table 1 shows some of their Bayes' estimates (marginal means

and standard deviations of the posterior distribution). For

simplicity, only a few of the coefficients are shown; the

behaviour of the others is similar. Table la uses data from
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a paper by Box and Behnken [1960). These data (see Figure 3)

apparently contain a single bad value (ylO), with a small

Kpossibility of a second bad value (Y1 3 ). Table lb shows

the same analysis for a second set of data arising from the

same design and published by Bacon [1970], which (see Figure

4) appears to contain no bad values. It was shown by Chen

and Box [1979) that for k ; 5 the posterior distribution

of is mainly a function of the single parameter

e = a/(l-a)k and the results obtained for k = 5 are

labelled in terms of e as well as a. The analysis is

based on locally noninformative priors on t and on log a

so that the estimates in the first columns of the tables

(e = a = 0) are ordinary least squares estimates. The

important point to notice is that for the first set of data

which appears to contain one or two bad values, a major

change away from the least squares estimates can occur as

soon as there is even a slight hint (e = 0.001, a = 0.005)

of the possibility of contamination. The estimates then

remain remarkably stable for widely different values of e

over a plausible range.(10) But for the second set (Bacon's

data), which appears to contain no bad values, scarcely any

change occurs at all as e is changed.

It has been objected that while the Normal model is

inadequate, the contaminated model (27) may be equally so,

and that "therefore" we are better off using ad hoc robust

procedures such as have been recommended by Tukey and others

and justified on the basis of their sampling properties.

This argument loses force, however, since it can be shown by

elementary examples (Chen and Box [1979), Box [1980]) that

the effect of the Bayes' analysis is also to produce

downweighting of the observations with downweighting

functions very similar to those proposed by the

empiricists. However, the Bayes' analysis has the advantage

of being based on a visible model which is itself open to

criticism and has greater adaptivity, doing nothing to

L (l0)ey .ie hoever (see reply to the discussion of Box [1980])

considerably different fra estimates obtained by omitting the suspect
observation and using ordinary least squares.
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samples that look normal, and reserving robustification for

samples that do not. A further advantage of the present

point of view is that when an outlier occurs, while the

posterior distribution will discount it, the predictive

distribution will emphasize it, so that the fact that a

discrepancy has occurred is not lost sight of.

CONCLUSION.

In summary I believe that scientific method employs and

requires not one, but two kinds of inference - criticism and

estimation; once this is understood the statistical advances

made in recent years in Bayesian methods, data analysis,

robust and shrinkage estimators can be seen as a cohesive

whole.
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